Hyperplane arrangements and K-theory
نویسنده
چکیده
Abstract. We study the Z2-equivariant K-theory of M(A), where M(A) is the complement of the complexification of a real hyperplane arrangement, and Z2 acts on M(A) by complex conjugation. We compute the rational equivariant K and KO rings of M(A), and we give two different combinatorial descriptions of a subring Line(A) of the integral equivariant KO ring, where Line(A) is defined to be the subring generated by equivariant line bundles.
منابع مشابه
Tutte polynomials of hyperplane arrangements and the finite field method
The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...
متن کاملDescent algebras, hyperplane arrangements, and shuffling cards. To appear
This note establishes a connection between Solomon’s descent algebras and the theory of hyperplane arrangements. It is shown that card-shuffling measures on Coxeter groups, originally defined in terms of descent algebras, have an elegant combinatorial description in terms of random walk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved.
متن کاملDescent Algebras, Hyperplane Arrangements, and Shuuing Cards
This note establishes a connection between Solomon's descent algebras and the theory of hyperplane arrangements. It is shown that card-shu ing measures on Coxeter groups, originally de ned in terms of descent algebras, have an elegant combinatorial description in terms of randomwalk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved. 2
متن کاملv 4 [ m at h . C O ] 1 5 Ju l 1 99 9 Descent Algebras , Hyperplane Arrangements , and Shuffling Cards
Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These coincide for types A,B,C, H3, and rank two groups. Both notions have the same, simple eigenvalues. The hyperplane definition is especially natural and satisfies a positivity property when W is crystallographic and the...
متن کاملDescent Algebras , Hyperplane Arrangements , and Shuffling Cards
Abstract Two notions of riffle shuffling on finite Coxeter groups are given: one using Solomon’s descent algebra and another using random walk on chambers of hyperplane arrangements. These definitions coincide for types A,B,H3, and rank two groups. Both notions satisfy a convolution property and have the same simple eigenvalues. The hyperplane definition is especially natural and satisfies a po...
متن کامل